Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648725

RESUMO

Under the influence of many factors, such as climate change, anthropogenic eutrophication, and the development of aquaculture, the area and frequency of algal blooms have showed an increasing trend worldwide, which has become a challenging issue at present. However, the coupled relationship between nitrous oxide (N2O) and algal blooms and the underlying mechanisms remain unclear. To address this issue, 15N isotope cultures and quantitative polymerase chain reaction (qPCR) experiments were conducted in Zhanjiang Bay during algal and non-algal bloom periods. The results showed that denitrification and nitrification-denitrification were the two processes responsible for the in-situ production of N2O during algal and non-algal bloom periods. Stable isotope rate cultivation experiments indicated that denitrification and nitrification-denitrification were promoted in the water during the algal bloom period. The in-situ production of N2O during the algal bloom period was three-fold that during the non-algal bloom period. This may be because fresh particulate organic matter (POM) from the organisms responsible for the algal bloom provides the necessary anaerobic and hypoxic environment for denitrification and nitrification-denitrification in the degradation environment. Additionally, a positive linear correlation between N2O concentrations and ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (nirK and nirS) also supported the significant denitrification and nitrification-denitrification occurring in the water during the algal bloom period. However, the algal bloom changed the main process for the in-situ production of N2O, wherein it shifted from denitrification during the non-algal bloom period to nitrification-denitrification during the algal bloom period. The results of our study will improve our understanding of the processes responsible for the in-situ production of N2O during the algal bloom period, and can help formulate effective policies to mitigate N2O emissions in the bay.


Assuntos
Eutrofização , Nitrificação , Óxido Nitroso , China , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Baías , Desnitrificação
2.
Metabolism ; 155: 155832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438106

RESUMO

Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.


Assuntos
Glucose , Interleucina-6 , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Transcrição STAT3 , Transdução de Sinais , Interleucina-6/metabolismo , Glucose/metabolismo , Animais , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Glicólise/fisiologia , Humanos , Inflamação/metabolismo , Fosforilação Oxidativa , Hexoquinase/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL , Reprogramação Metabólica
3.
Sci Total Environ ; 912: 168944, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042195

RESUMO

Coastal oceans are highly responsive to typhoons, making them one of the most affected regions. However, our understanding of the impact of typhoon intensity and movement path on marine dynamic processes and eco-environmental factors remains limited because there are very few on-site investigations, especially continuous field observations in the bay during typhoon events. This study investigated dual water isotopes through a continuous survey (with a 5-day interval) during ten cruises in Zhanjiang Bay, associated with two typhoons of varying intensities and landing tracks (left and right sides). After typhoons, the water mass mixing intensified and lasted for several weeks, depending on the intensity of typhoons. During the typhoon periods, there was a considerable increase in contributions from freshwater to nutrient loads; however, this contribution was higher from the stronger typhoon than the weaker one. The weaker Typhoon Lionrock, which landed on the left side of the bay, enhanced the ocean front due to onshore winds induced by the typhoon, causing intrusion of high-salinity seawater into the bay and retaining pollutants in the bay. However, when stronger Typhoon Chaba landed on the right side, offshore winds induced by counterclockwise wind stress during the typhoon resulted in more seawater flowing toward the lower and outer bay. This prevented the forming of an ocean front and played a dilution role in pollutants through its hydrodynamic process. This was primarily due to the fact that the landing trajectory of typhoons directly influenced the direction of seawater flow in Zhanjiang Bay, while the intensity of typhoons further amplifies these flow patterns. This study suggests that tracks of typhoon movement, rather than their intensity and terrestrial runoff, play a crucial role in governing marine dynamics and nutrient supplies in coastal bays during typhoon events.

4.
Mar Environ Res ; 194: 106311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154195

RESUMO

Dual water isotopes were investigated to reveal the seasonal distribution of water masses and their impacts on nutrient supply in southern Beibu Gulf. In summer and winter, the South China Sea (SCS) water (61-69%) contributed the most to the seawater in the southern Beibu Gulf, followed by the diluted water (24-34%), and the west-Guangdong coastal current (WGCC) (5-7%) had the minimum contribution. However, the major nutrient source shifted from the diluted water in summer (39-73%) to the SCS water (57-90%) in winter. The WGCC's impact on nutrient loads was relatively small (2-10% in summer, 4-34% in winter). Our results highlight the control of nutrient supply was the SCS water (winter) and diluted water (summer), with limited influence from the WGCC, providing new insights into the impact of water mass transportation and its nutrient supply in the Beibu Gulf.


Assuntos
Poluentes Químicos da Água , Água , Estações do Ano , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água do Mar , China
5.
Sci Total Environ ; 903: 166853, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673256

RESUMO

Typhoons and rainstorms (rainfall >250 mm day-1) are extreme weather events that seriously impact coastal oceanography and biogeochemical cycles. However, changes in the mixing of water masses and nutrient supply induced by typhoons and rainstorms can hardly be identified and quantified by traditional methods owing to the complex hydrological conditions in coastal waters. In this study, we analysed a comparative data set of dual water isotopes (δD and δ18O), hydrological parameters, nutrients, and chlorophyll-a from three periods (normal summer, rainstorm, and typhoon periods) in Zhanjiang Bay, a typical semi-enclosed mariculture bay in South China, to address this issue. The results revealed a significant increase in contributions from freshwater during rainstorms and typhoons. Correspondingly, nutrient supplies from freshwater during these periods remarkably increased compared to the normal summer, indicating that heavy rainfall can transport substantial amounts of terrestrial nutrients into the bay. Furthermore, disparities in hydrodynamic processes between typhoon and rainstorm periods were notable due to inconsistencies in freshwater diffusion paths. During rainstorms, freshwater primarily diffuses towards the outer bay in the upper layer due to strong stratification and cannot form an ocean front. However, under intense external forces caused by the typhoon, high-salinity water intruded into the bay, and enhancement of vertical mixing disrupted stratification. The massive influx of freshwater column during the typhoon mixed with higher salinity seawater column in the bay led to the formation of an ocean front, which could retain contaminants. This study suggests that although both rainstorms and typhoons can discharge large quantities of terrestrial nutrients into Zhanjiang Bay, the front formed during the typhoon period impedes the contaminant transportation to open sea thereby deteriorating water quality and affecting mariculture activities within the bay.

6.
Front Immunol ; 14: 1289795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264642

RESUMO

Tumor-associated macrophages (TAMs) are critical in the tumor microenvironment (TME) of hepatocellular carcinoma (HCC). Major vault protein (MVP) mediates multidrug resistance, cell growth and development, and viral immunity. However, the relationship between MVP and TAMs polarization has not been clarified in HCC. We found that MVP significantly increased M2-TAMs infiltration levels in tumor tissues of HCC patients. MVP promoted HCC proliferation, metastasis, and invasion by regulating M2 polarization in vivo and in vitro. Mechanistically, MVP associated with signal transducer and activator of transcription 6 (STAT6) and enhanced STAT6 phosphorylation. STAT6 translocated from the cytosol to the nucleus and regulated M2 macrophage-associated gene transcription. These findings suggest that MVP modulates the macrophage M2 transcriptional program, revealing its potential role in the TAMs of TME.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fator de Transcrição STAT6 , Partículas de Ribonucleoproteínas em Forma de Abóbada , Humanos , Fator de Transcrição STAT6/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo
7.
J Environ Manage ; 320: 115815, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926386

RESUMO

The decrease of river runoff caused by the intensified human activities (e.g. artificial dams) and increasing intrusion of high salinity water in the coastal bays have become a worldwide environmental problem. However, the mixing can hardly be identified by traditional method with temperature and salinity due to the complicated water sources in the coastal area. Thus, it is difficult to quantify the impact of intrusion of high salinity water on coastal ecological environment. Here, seasonal dual water isotopes (δD and δ18O), hydrographic parameters, and nutrients were investigated in a typical semi-enclosed mariculture bay in South China Sea (SCS), to quantify the intrusion of high salinity water and its impact on the water environment. The results showed that salinity in the bay has increased significantly (18%) over the past two decades due to the decrease of runoff and dredging activity. Zhanjiang Bay is mainly affected by the seawater from the SCS in outer bay, and the seawater from the outer bay (89%) was significantly higher than that of freshwater (7%) in summer, despite the increase in freshwater input from the river during this period. In winter, the intrusion of high salinity water increased (accounting for 94%) due to the decrease of runoff input. However, the contribution of groundwater was similar in summer (4%) and winter (5%). The estimation results from the relationship of δ18O-salinity and δD-salinity showed that the intrusion of high salinity water has increased significantly for the past two decades (increased by 23%). This resulted in the area suitable for oyster breeding is decreasing, and the oyster breeding activities have been gradually moving to the inner bay. Moreover, the nutrients in Zhanjiang Bay were mainly originated from freshwater input in summer (54%-90%), while it changed to the SCS input from the outer bay in winter (40%-97%). This study suggests that the intrusion of high salinity water significantly increases the salinity, and seriously retains the pollutants of freshwater in the bay, which poses a great threat to the oyster breeding activities in the semi-enclosed bay.


Assuntos
Água Subterrânea , Ostreidae , Animais , Baías , China , Monitoramento Ambiental , Humanos , Isótopos , Salinidade , Água do Mar , Água
8.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641167

RESUMO

To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (SN2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the SN2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and zeta potential at approximately -44.8~-34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations.

9.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641365

RESUMO

On account of the rigid structure of alginate chains, the oxidation-reductive amination reaction was performed to synthesize the reductive amination of oxidized alginate derivative (RAOA) that was systematically characterized for the development of pharmaceutical formulations. The molecular structure and self-assembly behavior of the resultant RAOA was evaluated by an FT-IR spectrometer, a 1H NMR spectrometer, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), a fluorescence spectrophotometer, rheology, a transmission electron microscope (TEM) and dynamic light scattering (DLS). In addition, the loading and in vitro release of ibuprofen for the RAOA microcapsules prepared by the high-speed shearing method, and the cytotoxicity of the RAOA microcapsules against the murine macrophage RAW264.7 cell were also studied. The experimental results indicated that the hydrophobic octylamine was successfully grafted onto the alginate backbone through the oxidation-reductive amination reaction, which destroyed the intramolecular hydrogen bond of the raw sodium alginate (SA), thereby enhancing its molecular flexibility to achieve the self-assembly performance of RAOA. Consequently, the synthesized RAOA displayed good amphiphilic properties with a critical aggregation concentration (CAC) of 0.43 g/L in NaCl solution, which was significantly lower than that of SA, and formed regular self-assembled micelles with an average hydrodynamic diameter of 277 nm (PDI = 0.19) and a zeta potential of about -69.8 mV. Meanwhile, the drug-loaded RAOA microcapsules had a relatively high encapsulation efficiency (EE) of 87.6 % and good sustained-release properties in comparison to the drug-loaded SA aggregates, indicating the good affinity of RAOA to hydrophobic ibuprofen. The swelling and degradation of RAOA microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Moreover, it also displayed low cytotoxicity against the RAW264.7 cell, similar to the SA aggregates. In view of the excellent advantages of RAOA, it is expected to become the ideal candidate for hydrophobic drug delivery in the biomedical field.


Assuntos
Alginatos/química , Aminas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ibuprofeno/administração & dosagem , Macrófagos/efeitos dos fármacos , Aminação , Animais , Ibuprofeno/química , Camundongos , Micelas , Estrutura Molecular , Células RAW 264.7
10.
Mar Pollut Bull ; 172: 112856, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34425368

RESUMO

The δ13C, δ15N and C/N ratio of the particulate organic matter (POM) in western Guangdong waters were determined to evaluate the impacts of the coastal currents on the POM in spring and summer. The predominance of photosynthetic organic matter in the nearshore was triggered by nutrients brought by the coastal currents in spring and summer, while the proportion of terrestrial organic matter in the offshore was very high in spring but low in summer. In spring, the weaker and narrower coastal currents carried insufficient nutrients (phosphate deficiency) to the offshore and prohibited phytoplankton production. This scenario contributes to the dominance of terrestrial organic matter transported by the cyclonic circulation beyond the coastal currents in the offshore in spring. The Bayesian mixing model reveals that the proportion of terrestrial organic matter (with 75.8% of C3 plants) in the offshore was higher in spring than in summer (with 33.7% of C3 plants).


Assuntos
Carbono , Material Particulado , Teorema de Bayes , Isótopos de Carbono , Isótopos de Nitrogênio/análise
11.
Mar Pollut Bull ; 167: 112349, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33865044

RESUMO

The isotopic compositions (δ13C and δ15N) and C/N ratios of suspended particulate organic matter (POM) were investigated off the east coast of Hainan Island in the South China Sea during summer. Coastal upwelling influenced the nearshore stations of transects S2 and S3, and higher δ13C and δ15N values suggested that coastal upwelling played a significant role in determining the POM sources. The POM at the nearshore area of transect S1 was controlled by the coastal current and freshwater discharge. Additionally, organic matter may be transported to the offshore area via tidal movements in transects S1 and S3. Based on the stable isotope analysis in an R model, the marine organic matter contribution in the upwelling area (19%) was higher than that in the other areas (transect S1 and the offshore area) (7%). The δ13C and δ15N values and C/N ratios reflect the carbon and nitrogen sources and their cycling in the upwelling zone off the east coast of Hainan Island.


Assuntos
Carbono , Material Particulado , Carbono/análise , Isótopos de Carbono/análise , China , Monitoramento Ambiental , Ilhas , Nitrogênio/análise , Isótopos de Nitrogênio/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-33669962

RESUMO

The tidal dynamics and the characteristics of pollutant migration in the drowned-valley tidal inlet, a typical unit of coastal tidal inlets, are strongly influenced by geomorphological features. Along with the development of society and the economy, the hydrodynamic and water quality environment of the tidal inlet is also becoming more disturbed by human activities, such as reclamation of the sea and the construction of large bridges. In this study, a typical drowned-valley tidal inlet, Zhanjiang Bay (ZJB), was selected for the establishment of a model via coupling of a tidal hydrodynamic model and water quality numerical model. This model can be used to simulate the migration and diffusion of pollutants in ZJB. The spatial and temporal variation processes of water quality factors of the bay under the influence of special geomorphic units was simulated at the tidal-inlet entrance, the flood/ebb tidal delta, and the tidal basin. The results show that ZJB has strong tidal currents that are significantly affected by the terrain. Under the influence of the terrain and tidal currents, the phosphorus and nitrogen concentration at the flood-tide and ebb-tide moments showed obvious temporal and spatial differences in the ebb-tide delta, tidal-inlet entrance, flood-tide delta, and tidal basin. In this study, we analyzed the response mechanism of the water quality environment to the drowned-valley tidal inlet, and this can provide theoretical guidance and a basis for decision-making toward protecting the ecology and water security of ZJB.


Assuntos
Baías , Monitoramento Ambiental , China , Humanos , Nutrientes , Qualidade da Água
13.
RSC Adv ; 11(24): 14295-14305, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423980

RESUMO

Since PVA membrane is of limited use for food packaging applications in moist conditions, polyvinyl alcohol/melamine-formaldehyde resin (PVA/MF) composite coating membranes with various contents of MF were fabricated by a chemical crosslinking method to reduce the sensitivity of PVA to moisture. The morphology, chemical structure, thermal and mechanical properties of the resultant PVA/MF composite coating membranes were characterized by scanning electron microscopy (SEM), FT-IR spectrometer, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC) and universal testing machine. In addition, their hazes and OTRs were also measured as a function of MF content. Experimental results showed that -OH in the molecular chain of MF and PVA could be crosslinked at room temperature to form a dense polymeric structure, resulting in the increase in viscosity and the decline in water absorption. The incorporation of MF into PVA gave rise to the enhancement of crosslinking through the C-O-C bonding and strong interface interaction between MF and PVA that was beneficial to improving its thermal stability, mechanical properties and barrier properties. Furthermore, the PVA/MF composite coating membranes exhibited superior transparency due to their good leveling and wettability on both BOPET and PLA substrates. The moisture resistance and barrier properties of the MF/PVA composite coated BOPET and PLA membranes under high humidity conditions have been greatly improved, and the oxygen transmission rates (OTRs) under 75% RH could still remain at about 1.0 cm3 per m2 per day. These characteristics of the PVA/MF composite coating membranes have made them exhibit widespread application prospects for coating membranes in the food packaging field.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32187974

RESUMO

Nitrate (NO3-) dual isotope analysis was performed in Zhanjiang Bay, which is a closed bay with intensive human activities in South China, to investigate seasonal changes in the main NO3- sources and their biogeochemical processes in the monsoon-controlled climate. The relatively low N/P ratios in Zhanjiang Bay suggests that nitrogen (N) is a limiting nutrient, which indicates that the increase of N is favorable for phytoplankton proliferation. However, a sufficient amount of ammonium was found in our study area owing to intensive human activities, which can support biological processes. Thus, less NO3- biological processes were found, indicating that NO3- isotopic characteristics may reveal details of the mixing from various sources. The Bayesian mixing model showed that NO3- in the upper bay originated from manure (43%), soil N (30%), N fertilizer (17%), and N precipitation (10%) during winter, which reflects the local human activities; while NO3- sources during summer were mainly N fertilizer (36%), soil N (32%), and manure (31%), indicating the source as the runoff from the upper river basin. Our results suggest that nitrate dual-isotope was very useful for tracing the main NO3- sources in the condition of the sufficient ammonium, and runoff exerted an important impact on the shift in NO3- sources between both the local source and the source from the upper river basin during the two seasons in this monsoon-controlled bay.


Assuntos
Monitoramento Ambiental , Atividades Humanas , Nitratos , Poluentes Químicos da Água , Teorema de Bayes , Baías , China , Nitratos/análise , Isótopos de Nitrogênio , Estações do Ano , Esgotos , Poluentes Químicos da Água/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-32093222

RESUMO

Elemental (total organic carbon (TOC) and total nitrogen (TN)) and stable carbon and nitrogen isotope compositions (δ13C and δ15N, respectively) in the surface sediment of Zhanjiang Bay (ZJB) in spring and summer were measured to study the spatial and seasonal changes of organic matter (OM) and assess the human-induced and environment-induced changes in the area. The OM in the surface sediment of ZJB was a mixture of terrestrial and marine sources, and was dominated by marine OM (54.9% ± 15.2%). Compared to the central ZJB, the channel and coastal ZJB areas had higher δ13C and δ15N values, higher TOC and TN concentrations, and lower TOC/TN ratios, indicating higher primary productivity and higher percentages of marine OM in the latter two subregions. Mariculture activities, sewage inputs, and dredging were responsible for these phenomena. Clear seasonal variations in OM were observed in ZJB. The average proportions of terrestrial OM in summer increased by 10.2% in the ZJB channel and 26.0% in the coastal ZJB area compared with those in spring. Heavy rainfall brought a large amount of terrestrial OM into the channel and coastal ZJB areas, leading to the increase of the terrestrial OM fraction in these two subregions in summer. In summary, anthropogenic influences had a significant influence on the spatial and seasonal variations of sedimentary OM in ZJB.


Assuntos
Baías , Monitoramento Ambiental , Sedimentos Geológicos/análise , Estações do Ano , Poluentes Químicos da Água/análise , Isótopos de Carbono/análise , China , Isótopos de Nitrogênio/análise , Análise Espacial
16.
Mar Pollut Bull ; 142: 603-612, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232347

RESUMO

Dual isotope nitrate (NO3-) analysis was performed on the western coast of Guangdong Province to investigate seasonal changes in the main nitrate sources and their biogeochemical processing, which are due to the rapid development of the local economy. In the nearshore area, significant seasonal variations of nitrate sources occurred. The dominant nitrate sources, originating from manure and sewage, suggested that the nitrate along the west coast of Guangdong Province was mainly influenced by local cities despite the westward flow of diluted Pearl River water. In the offshore area, the nitrate loss in the upper and mid water during both two seasons mainly caused by phytoplankton assimilation, whereas coupled nitrification-denitrification could be responsible for the nitrate loss in the bottom waters during summer. Our results suggest that, with the rapid development of local economy, the nitrate sources in the coastal area have shifted to manure and sewage from the local cities.


Assuntos
Nitratos/análise , Poluentes Químicos da Água/análise , China , Desnitrificação , Monitoramento Ambiental/métodos , Fertilizantes , Esterco , Nitratos/metabolismo , Nitrificação , Isótopos de Nitrogênio/análise , Fitoplâncton/metabolismo , Estações do Ano , Água do Mar/análise , Água do Mar/química , Esgotos/análise
17.
PLoS One ; 14(1): e0209287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30601849

RESUMO

Nitrate (NO3-) concentrations and their dual isotopic compositions (δ15N-NO3- and δ18O-NO3-) were measured to constrain N sources and their cyclic processes in summer using samples from the water column of the northern South China Sea (NSCS). Our data revealed that higher NO3- concentrations and δ15N-NO3- values were observed in the upper waters of the coastal areas near the Pearl River Estuary (PRE). The Bayesian stable isotope mixing model was used to calculated the proportion of nitrate sources, the results indicated that the nitrate in the upper waters of the coastal areas near PRE were mainly influenced by manure and sewage (63%), atmospheric deposition (19%), soil organic nitrogen (12%) and reduced N fertilizer (6%). For the upper waters of the outer areas, low NO3- concentrations and δ15N-NO3- values, but high δ18O-NO3- values, reflected that NO3- was mainly influenced by Kuroshio water intrusion (60%), atmospheric deposition (32%) and nitrogen fixation/nitrification (8%). Complex processes were found in bottom waters. Nitrification and phytoplankton assimilation may be responsible for the higher nitrate concentrations and δ15N-NO3- values. Our study, therefore, utilizes the nitrate dual isotope to help illustrate the spatial variations in nitrate sources and complex nitrogen cycles in the NSCS.


Assuntos
Nitratos/análise , Poluentes Químicos da Água/análise , Teorema de Bayes , China , Monitoramento Ambiental , Fertilizantes , Esterco , Nitratos/química , Nitrificação , Ciclo do Nitrogênio , Fixação de Nitrogênio , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Oceano Pacífico , Rios/química , Esgotos , Solo , Qualidade da Água
18.
Bioorg Med Chem Lett ; 20(19): 5677-80, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20797856

RESUMO

Two new indoloditerpene derivatives asporyzin A (1) and asporyzin B (2), one new indoloditerpene asporyzin C (3), and three known related indoloditerpenes JBIR-03 (4), emindole SB (5), and emeniveol (6) were isolated from an endophytic fungus Aspergillus oryzae, isolated from the marine red alga Heterosiphonia japonica. Their structures were unambiguously established by spectroscopic techniques. In addition, all the isolates were evaluated preliminarily for insecticidal and antimicrobial activities in order to probe into their chemical defensive function. Compound 4 was more active against brine shrimp than the others, and 3 possessed potent activity against Escherichia coli.


Assuntos
Anti-Infecciosos/química , Aspergillus oryzae/química , Diterpenos/química , Inseticidas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Artemia/efeitos dos fármacos , Encéfalo/enzimologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Indóis/química , Indóis/isolamento & purificação , Indóis/farmacologia , Inseticidas/isolamento & purificação , Conformação Molecular , Rodófitas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA